Overview
The List Clusters endpoint allows you to retrieve all GPU clusters associated with your account with comprehensive filtering, pagination, and sorting options. This is essential for managing large fleets of GPU resources across different projects and environments.Endpoint
Query Parameters
Parameter | Type | Required | Description |
---|---|---|---|
page | integer | No | Page number for pagination (default: 1) |
limit | integer | No | Number of clusters per page (default: 20, max: 100) |
status | string | No | Filter by cluster status: running , stopped , starting , stopping , error , pending |
gpu_type | string | No | Filter by GPU type: A100 , H100 , RTX4090 , V100 , T4 |
region | string | No | Filter by region: us-east-1 , us-west-2 , eu-west-1 , ap-southeast-1 |
project_id | string | No | Filter by project ID |
template_id | string | No | Filter by template ID |
sort_by | string | No | Sort field: created_at , name , status , gpu_count , cost |
sort_order | string | No | Sort order: asc , desc (default: desc ) |
search | string | No | Search clusters by name or description |
min_gpu_count | integer | No | Minimum number of GPUs |
max_gpu_count | integer | No | Maximum number of GPUs |
created_after | string | No | Filter clusters created after date (ISO 8601) |
created_before | string | No | Filter clusters created before date (ISO 8601) |
Request Examples
Response Schema
Response Fields
Cluster Object
Field | Type | Description |
---|---|---|
id | string | Unique cluster identifier |
name | string | Human-readable cluster name |
description | string | Optional cluster description |
status | string | Current cluster status |
gpu_type | string | GPU model (A100, H100, RTX4090, etc.) |
gpu_count | integer | Number of GPUs allocated |
cpu_cores | integer | Number of CPU cores |
memory_gb | integer | RAM in gigabytes |
storage_gb | integer | Persistent storage in gigabytes |
region | string | Deployment region |
project_id | string | Associated project ID |
template_id | string | Template used for cluster creation |
ssh_enabled | boolean | SSH access availability |
port_mappings | array | External port mappings |
proxy_url | string | HTTPS proxy URL for web services |
ssh_connection | object | SSH connection details |
metrics | object | Real-time performance metrics |
cost | object | Cost information and billing |
created_at | string | Creation timestamp (ISO 8601) |
updated_at | string | Last update timestamp (ISO 8601) |
expires_at | string | Auto-termination time (if set) |
Use Cases
Fleet Management
Monitor and manage large numbers of GPU clusters across different projects and environments.Development Environment Discovery
Find available development clusters for team members.Cost Optimization
Identify expensive or underutilized clusters for optimization.Error Handling
Security Considerations
- Authentication: Always use secure API keys with appropriate scopes
- Data Privacy: Cluster lists may contain sensitive project information
- Rate Limiting: Implement proper rate limiting for automated cluster monitoring
- Permissions: Ensure users have appropriate permissions to view cluster information
Best Practices
- Pagination: Always use pagination for large cluster fleets to avoid timeouts
- Filtering: Use specific filters to reduce API response times and data transfer
- Caching: Cache cluster lists for dashboard applications with appropriate TTL
- Monitoring: Regularly check cluster status and metrics for proactive management
- Cost Control: Monitor expensive clusters and set up alerts for cost thresholds
Authorizations
API key authentication. Use 'Bearer YOUR_API_KEY' format.
Response
List of clusters
The response is of type object[]
.